FARCOS Femtoscope Array for Correlations & Spectroscopy

- Overview of project and physics
 inputs
- Present status (mechanics, electronics) and perspectives for the use with GET electronics

G. Cardella, INFN-Catania EXOCHIM collaboration, INFN (LNS-Ct-Me-Mi-Na) GANIL, GEM-UHU, open collaboration

Physics topics

- 1. Heavy-ion collisions (stable and RI beams)
 - Dynamics (HBT, Femtoscopy)
 - Low & Intermediate energies: fusion, fission, DIC, Symmetry energy, Emission time-scales, probes of reaction models
 - Multi-particle correlation spectroscopy (MPCS)
 → cluster states
- 2. Direct reactions with RIBs
 - Inverse and direct kinematics
 - Nuclei close to drip lines

Relevance of angular resolution

 $1 + R(q) = k \times \frac{SY_{coinc}(\vec{p}_1, \vec{p}_2)}{SY_{at mixing}(\vec{p}_1, \vec{p}_2)}$

deuteron-alpha

$$\boldsymbol{q} = \boldsymbol{m} \left| \boldsymbol{\vec{V}}_1 - \boldsymbol{\vec{V}}_2 \right|$$

High angular resolution required: → Measurements at low q and sharp resonances

Multi-particle decay spectroscopy

Using heavy-ion collisions as an explorative spectroscopy tool: several unbound species in one single experiment

FARCOS TELESCOPE – phase 1

- Based on (62x64x64 mm³) clusters
- 1 square (0.3x62x62 mm³) DSSSD 32+32 strips
- 1 square (1.5x62x62 mm³) DSSSD 32+32 strips
- 4 60x32x32 mm³ CsI(TI) crystals

Fully reconfigurable (more Si layers, neutron and γ -detection, ..)

Geometric flexibility

Cross geometry centered on the beam axis (10 clusters)

Wall geometry placed at 45° from beam axis (9 clusters)

Planned geometries

Chimera rings

- Correlations in central collisions (cluster states, HBT, Asy-EoS)
- Correlations in Quasi-Projectile breakup
- Spectroscopy with radioactive beams

Direct reactions with exotic beams

Chimera

Farcos (³³Ar residue)

Coupling to spectrometers

Neutron detectors

Required identification performances (Chimera-like)

Large dynamical range

FARCOS detectors

- Double-Sided Silicon Strip Detectors
 300 µm and 1500 µm
 kapton cable and 2x32pin connectors
- Highly homogenous CsI(TI) crystals
 Wrapping: 0.12mm thick white reflector +50µm aluminized Mylar.
 2µm thick aluminized Mylar window at
 - the entrance (0.29 g/cm²)
 - •Read-out by photo-diodes (300µm)

First prototype modules built

4 clusters ready Experiments in Spring 2013 at LNS approved

Compact preamplifiers – Phase 1

32 channels Hybrid charge preamplifiers in a volume of about 8cm x 10cm x 2mmm

- Low power consumption:
- Rise-Time (pulser):
- Energy resolution (pulser) ~ 4-5 KeV for C_{input}=0-100pF
- Available with several sensitivities (5, 10, 45, 100 mV/MeV...)

(simplify cooling operations) ~ 3-7 nsec for C_{input}=0-100pF

~750 mW pwe 32 channels

INFN, Milano – C. Boiano, R. Bassini

Si-strips *a*-source tests

140

120

100

80

60

40

20

INFN-preamplifiers and Mesytec provide comparable E resolution (about 1% for the 300 μ m strip .5% for 1500 μm)

INFN more compact, faster, less power consumption

4.5

5.5

6

6.5

energy(MeV)

CsI(TI) uniformity tests with a-source

Source moved along silicon face (front and back)

Non-uniformities (if systematic) can be corrected thanks to position sensitivity of silicon strips (for higher energy particles)

Improve resolution in beam experiments

"Good" crystal: statistical fluctuations < 1%

First test beams – July2012 @ LNS

Chimera sphere view

p,α, Ne beams E/A=40, 20 MeV - Elastic scattering and Transfer reactions on various targets

- CsI(TI) uniformity
- Silicon resolution
- Integrating DAQ into Chimera system

Mounting of prototype telescopes

Si-Si matrix

Preliminary results... analysis underway Ne + $CH_2 \rightarrow Multifragmentation$

Pre-amplifier

boxes

Si-CsI(TI) matrix

Silicon strips @ Labec (INFN-FI)

- INFN and Politecnico of Milan and Farcos collaboration
- Fast pulsed beamline DEFEL: variable and controllable number of particles/pulse
- Energy changed between 1 and 6 MeV
- Position resolution: 100µm x 100µm: scanning of strips and inter-strip regions
- Digitalization of silicon signals with commercial VME SIS 3301

n-proton injection and resolution

Resolution: 0.5% Front - 1.2% Back

Test of linearity for Silicon+Preamplifier system

INFN and Politecnico, Milano for Farcos Collaboration

Interstrip energy sharing

Front injection + Back interstrip spanning

Data analysis under way

Study of energy sharing between neighboring strips

INFN and Politecnico, Milano for Farcos Collaboration

Experiments in 2013 @ LNS

CLIR: Clustering in Light Ion Reactions $16C + 12C \rightarrow 10Be + 6He$ $\rightarrow 12Be + 4He$

16C from tagged FRIBS projectile fragmentation \rightarrow 120 kHz

Experiments in 2013 @ LNS

8He: populations of resonances in 9He via d-p transfer reactions on 8He

16C from tagged FRIBS projectile fragmentation \rightarrow 120 kHz

FARCOS

Experiments in 2013 @ LNS

inkinlsy mass and isospin dependence of reaction mechanism Comparison of old 124Sn+64Ni data with 124Xe+64Zn

Use of farcos for p-p correlation for the comparison of source size and life-time

deuteron-alpha

FARCOS

Electronics hopes for phase 2 20 telescopes??

- Pre-amplifiers with multiple gains and large dynamic range (MeV to GeV)
- VSLI, configurability, low power... oriented towards physics!
- Pulse-shape capabilities
 - Low identification thresholds for low energy experiments
- Digitalization of detector signals
- Update possibilities
 - Solid angle increase (20 telescopes?)
 - Coupling to different detectors (in different laboratories)

Electronics hopes for phase 2 with GET

- 20 telescopes means 2560 strips + 80 Csl channels
- Means (including spares) about :
- 60 AGET 15 ASAD 5 COBO 2 MUTANT
- But preliminary test:
- Is the dynamical range and bit resolution enough?
- Do we need to use two cannels for each strip at least for front strips?
- Can you produce for us the electronics and what will be the price?
- Can we get the money from INFN?
- Can we couple the GET ACQ to CHIMERA ACQ?
- Fase 3?? Can we use GET or "upgraded-GET" to replace the old CHIMERA electronics (about 2400 channels CsI and silicon)?

Man power

- We are not too much
- For electronics:
- 1 staff engineer in Catania 3 students (Phd and postdoc levels) and some technicians no big experience in VLSI.
- Collaboration with 2 staff engineer and some students from Politecnico Milano with experience in VLSI.
- We are beginning some collaboration with Engineer department in Catania – experience on VLSI but not for nuclear physics.
- Some physicist experts in ACQ (1+1) and electronics (3 but 2 are the same of ACQ) help from some technicians.
- Available fellowships at INFN for engineers possible collaborations with LNL expertise for SPES detector development.

Status and... coming up...!

- Farcos has a preliminary configuration allowing for experiments at LNS and other laboratories (ex. GANIL)
 - Compact Preamplifiers, shapers, etc. for about 800 channels
 - Limited digitalization capabilities already available
- The array is going to increase in size... need for integrated technology
 - GET solution after the front-end; new integrated front-end (GET, INFN Milan-Politecnico, ...) we have to see if possible before the end of this year