RIB by Fragmentation @ LNS

One-day SPES LNS Oct 9th 2013

Sezione di Catania

Fragmentation beams at INFN-LNS - Catania

The 2010 upgrading of LNS Fragmentation beam

Beam diagnostic

The EXCYT diagnostic was essential to improve the beam transport efficiency respect to previous transports based on Pilot beams A.Amato,..G.Cosentino et al LNS report 2009

Other improvements done

We replaced the radioprotection safety collimators using new faraday cups – this will give a larger transport efficiency with a further intensity gain (will be quantified during next CLIR experiment using ¹⁶C beam)

Next improvement Chopper - 500

The production of consecutive accelerated bunches with a separation time of up to 200 ns and a width of 500 ps FWHM, is the goal of this new chopping beam system. The chopper 500 should cut the present length of the accelerated beam bunches, delivered from the superconducting cyclotron, from $1.5 \div 2$ ns to 0.5 ns.

From separation time 20-66 ns Width of single bunch 1.6-5 ns To separation time \leq 200 ns Width of single bunch 500 ps

Chopper-500 cavity

Next improvements

Next Improvvements

7 1 1 140

(ns)

150

160

170

the beam contamination and allowing the use of the tagging system at even higher beam yields

Beam identification

A fragmentation beam is generally a mixed beam and many efforts are devoted to improve its purity

In our case we decided to begin with a more simple approach – to identify event by event all beam nuclei performing many experiments at the same time

> The tagging system is therefore of fundamental importance

Tagging system: flow chart I DSSSD

I cannot change too much the beam characteristics if I want to use it

I cannot stop the beam in the tagging detector

What can I use for ΔE ?

Double side Silicon strip detector

One-day SPES LNS Oct 9th 2013

 Two main advantages: From the position of the strip I can also get the XY image of the beam

Many strips can sustain a larger rate than a single detector

Tagging System: flow chart II - RF-timing

Tagging system : flow chart III MCP timing

Tagging system: layout

Production and transport test: beam trajectory

Production and transport test: beam trajectory synergy LNL-LNS

We will use for the trajectory measurement a multiwire gas detector developed by the Exotic group for their LNL radioactive beam

Some pictures showing the tests performed by I.Lombardo and collaborators at Napoli

Intensities available from the most recent beams produced

primary beam	beam	intensity (kHz/100W)
18O 55MeV/A	16C	120
setting 11Be	17C	12
	13B	80
	11Be	20
	10Be	60
	8Li	20
18O 55MeV/A	14B	3
setting 12Be	12Be	5
	9Li	6
	6He	12
13C 55 MeV	11be	50
setting 11Be	12B	100
36Ar 42 MeV	37K	100
setting 34Ar	35Ar	70
	36Ar	100
	37Ar	25
	33CI	10
	34CI	50
	35CI	50
20Ne 35 MeV	18Ne	50
setting ne18	17F	20
	21Na	100
70Zn 42MeV		
setting 68Ni	68Ni	20

New beams to be used during 2014

⁸He (CHIMERA)

¹⁴Be (test experiment) collaboration with Leuven

³⁸S (Magnex)

FRAGMENTATION BEAMS: The first result - Di-proton

Using ¹⁸Ne beam we have studied the excitation and decay of a special state that can decay emitting a diproton

Recent results from CHIMERA

Isospin physics

PHYSICAL REVIEW C 00, 004600 (2012)

Effects of neutron richness on the behavior of nuclear systems at intermediate energies

G. Cardella,² G. Giuliani,^{2,3} I. Lombardo,^{4,*} M. Papa,² L. Acosta,¹ C. Agodi,¹ F. Amorini,¹ A. Anzalone,¹ L. Auditore,⁵
I. Berceanu,⁸ S. Cavallaro,^{1,3} M. B. Chatterjee,⁹ E. De Filippo,² E. Geraci,^{2,3} L. Grassi,^{2,3} J. Han,¹ E. La Guidara,^{2,7} D. Loria,⁵ G. Lanzalone,^{1,6} C. Maiolino,¹ T. Minniti,⁵ A. Pagano,² S. Pirrone,² G. Politi,^{2,3} F. Porto,^{1,3} F. Rizzo,^{1,3} P. Russotto,^{1,3}
S. Santoro,⁵ A. Trifirò,⁵ M. Trimarchi,⁵ G. Verde,² and M. Vigilante⁴

Competition between fusion and binary-like reactions as a function of N/Z using beams in the region of Ar

Experiments to be done – PIGMY with CHIMERA/FARCOS

Search for iso-scalar excitation of the PIGMY resonance in ⁶⁸Ni nuclei

Spokes: G.Cardella, E.G.Lanza for the EXOCHIM collaboration

investigations of the isoscalar response of the pigmy resonance well match with the recent production at LNS of ⁶⁸Ni beams in the framework of the TIMESCALEZN experiment

The need of new

⁶⁸Ni is the most intense beamtransported In our system we can in fact clean quite well not fully stripped ions that could be a source of intense background The mylar foil of the tagging MCP is a stripper foil cleaning most of such contaminants

The Pigmy resonance

The search for population and decay of the Pigmy resonance was particular stressed in the last years especially due to the results obtained with neutron rich nuclei at GSI. The interest was high also because its sensitivity to the symmetry term of the nuclear equation of state - A recent revue can be found in Progress in Particle and Nuclear Physics 70 (2013) 210 by D. Savran, T. Aumann, A. Zilges

Experiments at GSI were performed using ¹³²Sn and ⁵⁶Ni – The resonance was excited by virtual photons generated by the Coulomb field of heavy target nuclei, so probing its isovector response function

Reaction ⁶⁸Ni+¹²C To evidence the

evidence the isoscalar character of pigmy resonance

[Veh/ldm]

빌

PRI, 102, 092502 (2009)

Target

10 12

However various calculations

show that this resonance can

be excited also using

isoscalar probes

E [MeV]

68Nj

16 18 20

-

2x10⁴ part/sec/ 100 W primary

beam was obtained

Examples of lons 27+

stripped to 28+ by the

MCP mylar foil observed

changing the field of last

dipoles

Experiments to be done – CLIR with CHIMERA/FARCOS

Other test experiments coming

Another experiment in program approved by the PAC is the ⁸He production by using a ¹¹B primary beam – while with ¹⁸O primary beam there is a request for the ¹⁴Be study

⁸He+d - study of ⁹He resonance with CHIMERA+FARCOS Implantation and beta delayed decay study of ¹⁴Be By Leuven group R. Raabe and G.Randisi

Side view of a FARCOS telescope

Conclusions

I hope I was able to convince you that at LNS we have now enough intense intermediate energy radioactive beams that can be used for various kind of experiments

We already did various experiments and we are planning new ones both on structure and reaction mechanisms

Fragmentation beams at LNS and SPES are complementary beams we can do very good physics using them

Some of the collaborators list to be completed

L.Acosta¹, C.Agodi¹, A.Amato¹, F.Amorini^{1,3}, A.Anzalone¹, L.Auditore⁴, I.Berceanu⁹, L.Calabretta¹, C.Calì¹, G.C.^{*}, S.Cavallaro¹, M.B.Chatterjee¹⁰, L.Cosentino¹, M.D'Andrea², B.Diana¹, A.Di Stefano¹, E.De Filippo², N.Giudice², L.Grassi^{2,3}, A.Grimaldi², N.Guardone², E.La Guidara^{2,5}, F.Ferrera¹, E.Furia¹, G.Lanzalone^{1,6}, P.Litrico¹, I.Lombardo^{1,6}, D.Loria⁴, S.Marino¹, A.Maugeri¹, T.Minniti⁴, A.Pagano², M.Papa², A.Pappalardo¹, S.Passarello¹, G.Passaro¹, S.Pirrone², G.Politi^{2,3}, F.Porto^{1,3}, S.Pulvirenti¹, C.Rapicavoli², D.Rifuggiato¹, G.Rizza², F.Rizzo^{1,3}, A.Rovelli¹, P.Russotto^{1,3}, G.Saccà², S.Salamone¹, S.Santoro⁴, F.Sarta¹, A.Seminara¹, A.Trifirò⁴, M.Trimarchì⁴, G.Verde², M.Vigilante⁸ P.Figuera^a, A.Di Pietro, C.Maiolino^a, M.De Napoli^{b,c}, I. Pawelczak^d, M. Quinlan^d, G.Raciti^{b,c}, E.Rapisarda^{b,c}, C.Sfienti, D.Santonocito^a, W. U. Schröder^d, J. Tõke^d